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Abstract. Understanding mechanisms determining the coexistence between different species is one of the key issues 
in community ecology and biodiversity conservation. Microhabitat segregation is a way for species to coexist, which 
reflects the specific habitat selection of coexisting species in a finer spatial scale. Despite quantitative studies have been 
conducted to investigate the microhabitat segregation of coexisting species, this type of studies was not often per-
formed on tadpoles. In this study, we assessed the habitat selection of two coexisting tadpoles (Quasipaa boulengeri 
and Leptobrachium boringii) in a stream on Emei Mountain, China. Our results demonstrated that L. boringii and 
Q. boulengeri tadpoles occupied different microhabitats. Specifically, Q. boulengeri tadpoles preferred deep, narrow, 
and weak acid stream segments with slow current velocity and low value of conductivity, while L. boringii tadpoles 
tended to occur in a wide, shallow water bodies with relatively higher pH, conductivity, and current velocity. Overall, 
our study supported the Hutchinson’s niche concept, showing that at least one dimension of niche differentiation (i.e., 
microhabitat) occurred between coexisting tadpole species.
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INTRODUCTION

Understanding mechanisms determining the coexist-
ence between different species is one of the key issues in 
community ecology and biodiversity conservation (Adler 
et al., 2010; Hanane, 2015). Previous studies indicated 
that coexisting species should occupy specific ecologi-
cal niche (e.g., microhabitat niche, trophic niche; Grin-
nell, 1917) to evade competition based on the limiting 
similarity theory (Macarthur and Levins, 1967). As eco-
logical niche is an n-dimensional ecological space satis-
fying all the essential conditions that support the organ-
isms (Hutchinson, 1957), coexisting species exhibit at 

least one dimension of niche differentiation in the same 
ecosystem (Caceres and Machado, 2013; Hanane, 2015). 
This phenomenon can be referred to as niche partition-
ing involved in several facets, such as temporal or spa-
tial distribution, as well as the trophic habits (Baker and 
Ross, 1981; de Andrade et al., 2014; Schoener, 1974). 
Therefore, Hutchinson’s niche concept primarily focuses 
on habitats and resources utilization of sympatric spe-
cies, as well as their environmental tolerances (Rosen-
feld, 2002). Accordingly, the segregation of habitats can 
be considered as one of the important niche partition-
ing forms allowing the coexistence of species (Melo et 
al., 2013; Schoener, 1974; Wei et al., 2000). For instance, 
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Guo et al. (2012) indicated that two species of goby fish 
(Rhinogobius giurinus and Rhinogobius cliffordpopei) were 
introduced into Lake Erhai, China in 1961. They eventu-
ally had to adapt to a different ecological niche in order 
to coexist in the ecosystem.

At a mesohabitat scale, habitat segregation is usually 
tested in physiognomically homogeneous units (Heggenes 
and Saltveit, 2007; Kano et al., 2013; Rezende et al., 2010). 
However, when focusing on species at a finer spatial scale, 
habitat segregation is usually assessed by measuring a set of 
environmental parameters (Rincon, 1999). This can reflect 
exact habitat utilization of coexisting species in the same 
ecosystem, particularly in the aquatic ecosystems (Jackson 
et al., 2001; Jorgensen, 2004; Leger et al., 1983; Leitao et al., 
2015). For instance, two turtle species coexist in freshwa-
ter streams in Southwest of Iberian Peninsula due to their 
divergence in habitat selection. Specifically, the European 
pond turtle (Emys orbicularis) shows a preference for tem-
porary, shallow, well vegetated, and sandy stream segment, 
while the Mediterranean pond turtle (Mauremys leprosa) 
tends to occupy deeper stream segment with more rocks 
(Segurado and Figueiredo, 2007). Similar situation is also 
observed in two coexisting fish species in Anizacate River. 
In this ecosystem, current velocity is the key factor that 
facilitates the coexistence of the stream catfish (Trichomy-
cterus corduvense) and the eel catfish (Heptaterus muste-
linus), who prefers the high-velocity and the low-velocity 
water flows, respectively (Hued and Bistoni, 2006). Despite 
quantitative studies have been conducted to investigate the 
microhabitat segregation of coexisting species in different 
ecosystems (e.g., invertebrates, Mammola et al., 2016; fish, 
Horinouchi, 2008; Kessler and Thorp, 1993; and amphibian 
adults, Ayala et al., 2018), empirical studies are still relative-
ly rare in anuran tadpoles.

Tadpoles can exhibit plasticity in terms of function-
al traits (Jordani et al., 2019; Zhao et al., 2019), behav-
ior (Freitas et al., 2019; Zhao et al., 2019), and metabo-
lism (Freitas et al., 2019; Wang et al., 2019) in response 
to environmental change. In addition, tadpoles could 
influence the composition and abundance of plankton 
and periphyton, which has cascading effects on primary 
productivity in aquatic ecosystems (Alford and Wilbur, 
1985; Seale, 1980; Strauss et al., 2010). More importantly, 
tadpoles are the larval stage of amphibian adults, which 
face multiple threats (e.g., habitat loss, climate change, 
and pollution, Alford, 2011). Therefore, identifying the 
microhabitat selection of coexisting tadpoles may bring 
important insights to tadpole biodiversity conservation, 
and suggest priorities for the improved management of 
mountain stream ecosystems.

In the present study, we evaluated the habitat selec-
tion of two coexisting tadpoles, Quasipaa boulengeri and 

Leptobrachium boringii in a mountain stream. Specifically, 
we first compared the difference of variables of microhab-
itat occupied by L. boringii and Q. boulengeri tadpoles. 
We then explored the distribution pattern of the two tad-
poles in the stream. Based on previous studies (e.g., Win-
ston, 1995; Xu et al., 2020), we predict that the coexisting 
tadpoles of two different species occupy different micro-
habitat.

MATERIAL AND METHODS

Study area and species description

Field work was carried out in Heilongjiang stream, Qing-
yinge of Emei Mountain, Sichuan Province, China (Fig. 1). The 
vegetation of this area is mostly composed by evergreen broad-
leaved forest. The elevation of this region is about 680m a.s.l., 
and the weather is characterized by subtropical monsoon cli-
mate. The mean annual temperature and the mean annual pre-
cipitation is about 17.29 °C and 1555.3 mm (Gu and Li, 2008; 
Ling, 2005). Several tadpoles belonging to different species were 
detected during our field work in this stream (e.g., Megophrys 
omeimontis, Megophrys minor, Odorrana graminea, Q. bou-
lengeri, L. boringii, Leptobrachella oshanensis, and Odorrana 
schmackeri). The dominant species were L. boringii and Q. bou-
lengeri, which occupied 90% of the proportion of the individu-
als. We focused on the divergences in habitat selection occur-
ring between these two dominant species, as it would be more 
physiological than that showing how non-dominant species can 
coexist (Lyons et al., 2005; Barrett et al., 2008).

Data collection

Based on the distribution of target tadpoles and accessible 
for the sampling, one kilometer of the segment of the stream 
was selected as the transect. The transect was fixed and extend-
ed through a gorge, with strong variability in its physical vari-
ables due to the complex terrain and different vegetation cov-
er rate. We divided this transect into three parts based on the 
blocking of rocks (i.e., approximate 200m of the upstream tran-
sect, 450 m of the medium-stream transect, and 350 m of the 
downstream transect). Tadpole sampling was carried out after 
sunset (between 20:30 and 23:00) from 22nd to 27th in August 
2018. We searched at the both edges (about 1m from the bank) 
of the stream where the tadpoles distributed, with one part of 
one side being sampled per night. Specifically, we divided each 
side of the transect into 1000 squares (1 × 1 m), and two per-
sons searched these plots of 1 m2 intensively from downstream 
to upstream using torch (220 lm). Once the target tadpoles were 
detected, the related square was recorded as one valid quad-
rat. After that, all the tadpoles located in the quadrat were col-
lected by sweeping all potential microhabitats for tadpoles (i.e., 
water column and edge of rocks with and without vegetation) 
using hand nets (mesh size: 2 mm). We assumed that tadpoles 
likely did not have chances to move from one side to the other 
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of the river, or to cross the rocks limiting the sections during 
the survey period. The two target tadpoles can be easily iden-
tified based on their external morphology. Specifically, there is 
a light “Y” symbol at the back of L. boringii tadpole, while Q. 
boulengeri tadpole has flat head and back, thick caudal muscle, 
and I:4+4/1+1:II labial tooth row (Fei et al., 2012, Fig. S1). Col-
lected tadpoles were kept in 500 ml plastic bottles with fresh-
water from the stream separately. The stage of each tadpole was 
determined based on Gosner (1960).

In each quadrat where we found tadpoles, a set of eight 
environmental factors were measured. Details of the factors 
and the related measurement approaches are as follows: sub-
strate type was divided into two groups (i.e., gravel and a mix 
of gravel and humus, associating with different food resources 
in the quadrats), water temperature was measured to the nearest 
0.1 °C by a thermometer (KTJ - TA318, China, Shenzhen), river 
width was measured to the nearest 0.1 m using a tape meter, the 
maximum depth of the quadrat was measured to the nearest 
0.1 cm with a ruler, current velocity was measured to the near-
ness 0.1 m/s using a portable current meter (LS1206B, China, 
Nanjing), pH, conductivity (to the nearest 0.1μS/cm) and dis-
solved oxygen (to the nearest 0.1 mg/l) were measured using a 
portable fluorescence photometer (Star A, 520M - 01A, Thermo 
Fisher Scientific, USA). During the measurements, the research-
er remained outside the stream to do not affect the recorded 
parameters (Ferreira et al., 2015).

Statistical analyses

Shapiro-Wilk test was used to test the normality of the 
seven environmental variables of microhabitats. In order to 
compare the difference of variables of microhabitat occupied by 
L. boringii and Q. boulengeri tadpoles, we conducted Student’s 
t tests for variables which followed a normal distribution, or 
Mann-Whitney U test for those were not normal distributed. 

After that, we used detrended correspondence analysis (DCA) 
to explore the distribution pattern of the two tadpoles (lin-
ear model or single peak model). Considering the DCA axis 
lengths is less than 3 (i.e., the species distribution was fitted well 
with the linear model), we finally chose redundancy analyses 
(RDA) to quantify the environmental determinants of the dis-
tribution of the two target tadpoles. All statistical analyses were 
performed in R version 3.6.1 (R development core team 2020) 
using the packages stats, spaa, and vegan. 

RESULTS

In total, 27 quadrats were sampled and measured for 
environmental variables, in which 13 quadrats were occu-
pied by L. boringii tadpoles, and 14 quadrats were occu-
pied by Q. boulengeri tadpoles. These two tadpoles were 
not detected at the same time in each of the sampled 
quadrat. We overall captured 74 individuals of L. boringii 
from stage 24 to 37 and 193 individuals of Q. boulengeri 
from stage 25 to 43. 

Student’s t test indicated that there was no significant 
difference of dissolved oxygen (t = -1.674, P = 0.107) in 
the microhabitats that were occupied by L. boringii and 
Q. boulengeri tadpoles. Mann-Whitney U tests revealed 
that pH, conductivity, river width, water depth, and cur-
rent velocity were significantly different (P < 0.05; Fig. 2; 
substrate type cannot be tested as it was a categorical var-
iable). Specifically, L. boringii tadpoles occupied quadrats 
that had higher values of pH, conductivity, river width, 
and current velocity, but lower values of water depth. 
In contrast, Q. boulengeri tadpoles occupied quadrats 
that had lower values of pH, conductivity, river width, 

Fig. 1. Geographical location of the study area. The solid line describes the range of Emei Mountain.
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and current velocity, but higher values of water depth. 
In addition, no significant difference existed in terms of 
water temperature values (W = 93.5; P > 0.05).

The RDA model was significant when testing the envi-
ronmental determinants of the distribution of L. boringii 
and Q. boulengeri tadpoles (P = 0.001). The first two axes 
accounted for 65.75% of the variation (62.45% and 3.28%, 
respectively). Our results revealed that five environmental 
factors including substrate type, river width, current veloc-
ity, pH, and conductivity had highly significant effects on 
the distribution of L. boringii tadpoles and Q. boulengeri 
tadpoles (P = 0.001, Table 1), and the influence of water 
depth was significant (P < 0.05, Table 1). Obvious dissimi-
larity of the distribution of L. boringii and Q. boulengeri 
tadpoles could be observed in the RDA sequence diagram 
(Fig. 3). Specifically, most of the quadrats occupied by L. 
boringii tadpoles were distributed in the second and third 
quadrant densely, which were positively associated with 
current velocity, river width, pH, conductivity, and sub-

strate type. However, they were negatively correlated with 
water depth. In contrast, most of the quadrats occupied by 
Q. boulengeri tadpoles exhibited opposite distribution pat-
tern, which were positively correlated with water depth, 
and negatively associated with current velocity, river width, 
pH, conductivity, and substrate type.

DISCUSSION

Discrepant preferences for microhabitat utilization on 
a small scale is often considered to be responsible for the 

Fig. 2. Comparison of environmental variables of microhabitats 
between L. boringii tadpoles and Q. boulengeri tadpoles. “leb”: L. 
boringii tadpoles, “qub”: Q. boulengeri tadpoles.

Table 1. The influence of eight environmental factors tested by RDA 
analyses on the two tadpole species.

Environmental 
Variables RDA1 RDA2 r2 P

pH -0.918 0.397 0.524 0.001
Conductivity -0.968 0.252 0.573 0.001
Dissolved oxygen 0.997 0.082 0.139 0.160
Water temperature -0.650 0.760 0.012 0.869
River width -0.847 0.531 0.596 0.001
Water depth 0.793 -0.609 0.266 0.014
Current velocity -0.737 0.676 0.600 0.001
Substrate type -0.799 0.600 0.632 0.001

Significant effects are indicated in bold.

Fig. 3. Redundancy analyses of the relationships between environ-
mental factors and the distributions of model tadpoles. The length 
of an environmental vector indicates the degree of correlations. 
Only significant variables are depicted (P < 0.05), “leb”: L. boringii 
tadpoles, “qub”: Q. boulengeri tadpoles.
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coexistence of sympatric species (Dammhahn and Good-
man, 2014; Dammhahn et al., 2013; Escoriza et al., 2018; 
Wei et al., 2000; Yang et al., 2019). Our results demon-
strated that despite Q. boulengeri and L. boringii tadpoles 
co-occurred in the same stream, microhabitat segregation 
existed between them. Specifically, L. boringii tadpoles 
tended to occur in a wide, shallow water bodies with rela-
tively higher pH, conductivity, and current velocity, which 
was consistent with previous study (Wei et al., 2017). In 
contrast, Q. boulengeri tadpoles were apt to occupy deep, 
narrow stream segments with low pH, conductivity and 
current velocity. Therefore, our results indicated that 
these two tadpoles occupied totally different microhabitat 
in this stream. Indeed, due to the poor movement abil-
ity, tadpoles’ microhabitats are largely determined by the 
selection of breeding habitats by breeding adults (Biester-
feldt et al., 1993). Therefore, the occupation of the micro-
habitat of the two tadpole species were in accordance with 
previous observation showing that female Q. boulengeri 
spawned in puddles under the stream waterfall, while 
female L. boringii spawned at streams segments with more 
rocks and slow water flow (Fei et al., 2012).

It has been recognized that tadpole functional traits 
were correlated with their selection of microhabitats in 
water bodies (Fatorelli et al., 2015; Glos et al., 2017), as 
well as other factors (e.g., predatory occurrence and strat-
egy, Mogali et al., 2020). Based on our previous study (Xu 
et al., 2020), these two tadpole species have distinct phe-
notypic functional traits, which also reflected their adap-
tation of different environment in the water bodies (Zhao 
et al., 2017). Specifically, Q. boulengeri tadpoles have flat-
tened bodies and stubby tails, associating with their selec-
tion of deep and slow flowing water bodies. L. boringii 
tadpoles have long and muscular tails, which can be use-
ful for them to swim when water velocity is high. These 
external functional traits reflect the food acquisition and 
locomotion of tadpoles, which are critical for them to 
obtain nutrients to survive, and to facilitate the move-
ment in water bodies (Schoenfuss and Blob 2007). In the 
present study, substrate type was one of the main envi-
ronmental factors determining the distribution of the two 
tadpoles, which probably related to their feeding prefer-
ences. That is, Q. boulengeri tadpoles tended to choose 
a substrate with gravels which can provide them adher-
ent algae and benthos. In contrast, L. boringii tadpoles 
preferred a mixture of humus and gravels where organic 
detritus and invertebrates are more abundant. However, 
more work such as stable isotope analyses are needed to 
verify our inferences. 

Overall, the present study evaluated the microhabitat 
segregation of two sympatric tadpole species in a moun-
tain stream. Our observations supported Hutchinson’s 

niche theory demonstrating that the existence of at least 
one dimension of niche differentiation between coex-
isting species. Therefore, specific microhabitat features 
should be incorporated into the conservation strategies 
for different species. Beyond our studies, future work 
could focus on the roles that coexisting species played in 
communities and ecosystems. Furthermore, as mountain 
streams are vulnerable to anthropogenic disturbance, how 
increasing fishing pressure on tadpoles from tourists may 
affect ecosystem functioning can be also tested.
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